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The fundamental concept of relative entropy is extended to a functional that is
regular-valued also on arbitrary pairs of nonfaithful states of open quantum
systems. This regularized version preserves almost all important properties of
ordinary relative entropy such as joint convexity and contractivity under com-
pletely positive quantum dynamical semigroup time evolution. On this basis a
generalized formula for entropy production is proposed, the applicability of
which is tested in models of irreversible processes. The dynamics of the latter is
determined by either Markovian or non-Markovian master equations and
involves all types of states.
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I. INTRODUCTION

Relative entropy is a concept of central importance in various fields, such
as mathematical probability theory.!"*? and classical or quantum statistical
mechanics.*% In quantum theory relative entropy can be regarded as
being of a more fundamental nature than the von Neumann entropy. This
point of view has been adopted in the excellent texts by Ohya and Petz,*®
and by Thirring." It is true indeed that the relative entropy functional
must be used in the proofs of many important and partly surprising
properties of the von Neumann entropy itself as, for example, strong sub-
additivity.*®

In the theory of stochastic processes it is usually assumed that the
amount of information which is contained in a given probability density
decreases in the course of time. The relative entropy is a measure for the
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loss of information between the initial and the final states. A similar inter-
pretation applies to irreversible quantum dynamical processes close to
thermodynamic equilibrium where the second law of thermodynamics is
obeyed. This is the case in the so-called weakly irreversible regime which
is described by the quantum version of the phenomenological Onsager
theory, and where a linear relationship between generalized forces and
fluxes is valid.”® The important quantity of entropy production is then
given by a time-derivative of relative entropy if the dynamics is determined
by a completely positive quantum dynamical semigroup.® %11

For more general irreversible processes, in particular those very far
from equilibrium and of a strongly non-Markovian nature, thermodynamic
considerations break down, but the von Neumann entropy still remains a
useful concept because of its information theoretic interpretation for single
states. Moreover, to classify pairs of states on the basis of their relative
information content or, else, to measure the change of information during
a dynamical evolution, relative entropy again is a useful quantity. It is
positive for all pairs and can be used to establish a generalized formula for
entropy production. On the other hand, some rather inconvenient proper-
ties must be analyzed in more detail.

First of all, relative entropy Q(p, o) is an ordered functional of two
states p and o that takes on different values for reversed order. This spoils
its desired interpretation as representing something like a distance in state
space.®) Furthermore, in finite dimensions, i.e., for N-level systems, the
maximum value of entropy is finite but relative entropy can become
infinite, namely, whenever the second state is non-faithful (non-invertible).
State space is a compact convex set, embedded in a real vector space, with
the pure states as extremal points. A peculiar situation arises for two states
p and ¢ lying very close together, where ¢ is assumed to be pure. Then
Q(p, a) takes on the value + oo, whereas Q(a, p) almost equals zero. This
testifies to a dependence on directions in state space, and is of practical
significance in relation to the second law of thermodynamics where during
any state change from p to o the degree of mixture and, consequently, the
entropy™ can only increase. On the other hand, for a general time evolu-
tion between these two states far from the weakly irreversible regime the
above-mentioned asymmetry seems to be completely unrealistic since either
of states p, o can be chosen to be the initial or final state. Moreover, in case
of quantum dynamical semigroup evolution one can even determine the
two different infinitesimal generators for such twin processes. Pure final
states are not at all unrealistic but occur, for instance, in various problems
of spectroscopy whenever the emission of quanta from an excited level to
a ground state is considered. Initial and final state have entropy zero, and
relative entropy is infinite. Hence there is no obvious way to calculate
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entropy production from time-dependent relative entropy as in the weakly
irreversible case. For this reason a functional which is different from but
similar to relative entropy has been proposed earlier."? It has the draw-
back that some of the important properties of the latter must be
abandoned. Nevertheless, reasonable analytical results for photon emission
in a two-level system as well as for free induction decay have been
obtained.

We believe that the theory should still be improved. A few more con-
siderations must be taken into account and should support our point of
view. One could argue that for processes outside the weakly irreversible
regime there would not be any need of the relative entropy functional.
From a purely mathematical point of view some suitable entropy-like
Lyapunov functional might be sufficient to determine entropy production.
However, several physical reasons will favour an extrapolated version of
relative entropy even far from equilibrium. First of all, according to all
experience general irreversible quantum dynamics with unique final state
will always show two characteristic time intervals. A very instructive exam-
ple is given by quantum collapse and revival dynamics in the damped
Jaynes-Cummings model in quantum optics.*® A first regime is charac-
terized by a posssibly strong non-Markovian behavior followed necessarily
by a second Markovian regime in the long-time tale. This is ultimately the
reason why for many processes a weak-coupling (van Hove) limit is possible
at all in that the first non-Markovian interval either shrinks to zero or
becomes so small that its effect can be taken into account by so-called slip
initial conditions.?® It is in this Markovian tail that use of the relative
entropy functional is a must, as has been shown in various papers.!®!"-32)
It does not seem likely that a Lyapunov functional chosen for the first
interval would fit to this regime. Second, and certainly most important,
a Lyapunov functional will contain considerably less information on essential
details of the underlying physics in the non-Markovian region. This will be
clear, for instance, from Fig. 4 where wiggles in the relative entropy as a
function of time clearly show that it is not Lyapunov but reproduces a
complicated variation of entropy itself as due to strong interaction with the
reservoir. With caution can one call this a damped exchange of entropy
back and forth between system and reservoir. The caution is due to the
Araki-Lieb inequality'® for the von Neumann entropy which implies that
for two coupled systems there are bounds but no exact conservation law
for the sum of partial entropies. As a consequence, it can happen that
entropy increases (or decreases) simultaneously in both systems.®*® In any
case this oscillating phenomenon is completely absent in Markovian
dynamics and, according to the concepts proposed later, considerably
enhances the value of entropy production. It is obvious that in this way a



1118 Lendi et al.

marked distinction between Markovian and non-Markovian characteristics
of dynamics is provided. It is difficult to see how a Lyapunov approach
could reproduce the same information.

All the above arguments support our proposal to base calculations on
a suitably regularized concept for relative entropy. On the one hand, all
relevant properties of the conventional functional should be retained and,
on the other hand, the asymmetry and the singularities should be sup-
pressed. We shall demonstrate how this can be achieved for Hilbert spaces
of finite dimensions.

In Section II.A we collect all important properties of the ordinary func-
tional for relative entropy. This provides the necessary basis for a com-
parison with the regularized version, which will be presented in Section I1.B.
Section III is then devoted to applications. First, an extended formula for
entropy production will be proposed. Subsequently, this generalized concept
is used to study three examples of irreversible dynamical processes ranging
from simple Markovian to complicated non-Markovian.

Il. RELATIVE ENTROPY

In order to fix notation and to state basic properties we first give an
account of known theorems on the ordinary relative entropy functional.
Then we proceed to the proposal for a regularized version in finite dimen-
sions.

A. Ordinary Relative Entropy

State space of an open quantum system is the positive convex cone I’
of self-adjoint and normalized trace-class operators p, so Trp=1Vpel.
The convex set I has extremal points® !» represented by one-dimensional
orthogonal projectors {p,} in terms of which the spectral decomposition
for any p eI is given by

p= _i Aipi 0S4 :21 =1 pi=pF pibe=dapr (1)
The absolute von Neumann entropy is then given by
S(p):—Trplnpz——il,.lni,-ZO (2)
i=1
A related functional for pairs of states is usually defined as

Q(p,o)=Trp(lnp—Ing)=20, Vp,oel (3)
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The so-called relative entropy Q provides a measure for the entropy of one
state relative to another state. Note that the minus sign in (3) does not
affect nonnegativity but under the spectral restriction in (1) there is the
asymmetry

O(p,a)#Q(o, p) 4)

Thus, Q does not have a distance-like property in I". In terms of nor-
malized eigensolutions

px0=2,x0, gy =py® (5)

one finds explicitly for Q

0p.a) =Y A, (m A.~—Z|<x“>-y<k>>|21nuk> (6)
i k

For pairs with [ p, ] =0 we get
Ai
0(p.2) =3 is1n (%) ™

From formulas (6) and (7) it is manifest that O = co whenever one or more
eigenvalues of ¢ are zero or, in other words, whenever ¢ is a non-faithful
state.

In the following we list further important properties of Q.

(1) The mapping (p, ) = Q(p, o) is unitarily invariant, jointly con-

vex and lower semicontinuous,®% 1617
Q(UpU*, UsU*) = Q(p,6), UU*=U*U=1 (8)
OQap, + Bp2, a0, + a,) <aQ(py, 1) + fO(p,, 02), at+f=1 9)

Lower semicontinuity is an essential analytical property of convex
y y
functions.“" 14.1%)

(2) If we consider a composition of two independent systems and
form states Q=p®r and @ =0®1 then the value of Q remains
unaltered, %20

(2, 9)=0(p, o) (10)

(3) For a composition of two interacting systems with Hilbert spaces
#, and s two different total density operators £ and € acting on
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H =M ® H#; are no longer tensor products. The corresponding operators
restricted to # are obtained by taking partial traces, p=Tr,(2) and
o =Tr,(®). In this case, Q has the contractive property* 20

Q(p,0) < Q(2, @) (11)

More general, if &/ is the operator algebra of a finite quantum system and
@ and w are states on &/ with ¢(a)="Tr(pa), w(a)=Tr(ca), ae s/, one
may consider a restriction to a subalgebra % <./ with corresponding
states /% and w/%. Again, one proves®’ that

Xo/%, w/B) < Ao, w) (12)

(4) Another fundamental contractive property exists if the time
evolution of p and o is determined by a quantum dynamical semigroup 4,,
t=0, and if the dual A} acting on the operator algebra of observables is
completely positive.>'#1) Then for p,=A,p and o,=A4,06 one can
prove® that

Qp o)< Qp,0) (13)

This inequality is of particular importance if ¢ is the unique final destination
state of A,, lim,_, , A,p =0, or, else, 4,6 =g, and, therefore, Q(p,, o) <
Q(p, o). Under these conditions entropy production P , is determined by Q
according to refs. 10 and 11

d
PA(p, o) = —b O(A.p, a)} . (14)

Consequently, for faithful states and finite dimensions P, is entirely deter-
mined by the infinitesimal generator L of A, =exp[Lt] through

P(p,o)=Tr L(p)Ino—In p) (15)

Again, P (p, o) is jointly convex, a stability property originating ultimately
from the one provided by the concavity of S(p).

(5) There is a lower bound on Q in terms of the trace norm‘®

Q(p,0) 2 35llp—al? (16)

where the norm of an operator 4 is defined by ||4| = Tr(4*A4)"% A some-
what cruder but more explicit bound can be found by making use of the
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ordered sets of eigenvalues {4, >4, ---} of p and {y; = u, .-} of 6. One
gets

1 © 2
0,023 ( X k-l (1)

i=1

The idea that Q might represent something like a distance in state space is
obviously suggested by the above semi-inequalities.

(6) An upper bound can also be established by using a special case
of Lieb’s concavity theorem.!!® This leads to the result

Q(p,0)<Tr(p’e~') -1 (18)

(7) The relevance of Q for thermodynamic stability can be seen as
follows.* For different isothermal states p the free energy Fy(p) attains
its minimum for the canonical Gibbs state o=exp[ —fH]/Z, H the
Hamiltonian, ff the inverse temperature and Z the partition function. Thus,
[ Fa(p) — F4a)] is positive whenever p #g. It is interesting to note that
under these conditions one proves that

O(p, 0) =BLFs(p)— Fgl0)] 20 (19)

B. Regularized Relative Entropy

The following considerations are restricted to a Hilbert space # with
dim o = N < o0, so that the states are represented by N x N-matrices. The
search for a regularized functional R(p, ¢) which avoids any singularities,
is guided by the fact that the von Neumann entropy takes on a unique
maximum for the central state ¢,

1
C=N1N, S(¢)=InN (20)

Therefore we require that R possesses also an upper bound, which is
proportional to S(&). Furthermore, it is still desirable that R provides a
kind of relative measure as symmetric as possible in the two arguments.
Finally, and most crucially, R should preserve as many properties of the
ordinary relative entropy as possible. All this should then yield an accept-
able candidate for an entropy production in irreversible processes, in par-
ticular those involving also non-faithful states.

The original idea for the functional @ was based on Klein’s
inequality*!*2Y which, in a somewhat more general formulation, states
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that for any two nonnegative operators 4 and B there exists a nonnegative
form F(A, B) given by

FA,B)=AlnA—-AInB—-A+B>=0, A, B=20 (21)

For density operators the right-hand side reduces directly to Q upon taking
a trace. It is essential to recognize that for invertible B there exists an upper
bound on F. Therefore, we replace the ordinary density operators by
invertible operators. We introduce spectrally shifted operators g and nor-
malized operators j by

p=p+1y, p=cyp, ey=(1+N)"1 Trp=1 (22)
and define the regularized version R of the relative entropy by

We emphasize that a positive spectral shift does not affect the important
convexity properties. The proportionality factor ay is fixed by the require-
ment that for any pure state p, = p? relative to the central state, R takes
on its maximum value. The constraint

R(po,&)=S()=InN (24)
leads to the result

. (N+1)In N
NENF D) In(NA(N+1))+21n2

(23)

Whereas there i1s an upper bound by construction no further modifications
are necessary to derive the lower bound on R. Note first that Q is
homogeneous of degree one and we can write

R(p, 0) = ancyQ(p, 6) (26)

It is thus sufficient to consider Q( 3, &). For any difference (p — o) we define
p to be the spectral projection on the nonnegative part of the spectrum,
and g to be the complement such that p+ ¢ =1,. In terms of the traces

x=Tr(pp),  y=Ti(ps), 0<x y<l (27)
the norm can be written as

lp—oll =2(y—x) (28)
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where, without loss of generality, we have assumed p = x. Consider now the
two commuting states

. 1 +x 0 . 1+ y 0
(050 =0 L0) ()
and the inequality

Slx, y) =0 (30)

for the function f defined by
< oLy 2 2
S 3)=0(ppe 6,) =3 (x— )

_ I+x B 2—-x\ 2 a2
—(l+x)1n<1+y>+(2 x)ln<2§y> 3(x yy: (31

The proof of (30) goes by elementary analysis, and shows also that the
equality sign applies to the unique case x=y. From (28) and (31) one
concludes that

(600 5,,6,1)?=2(y—x)=lp—o0| (32)

Since projectors p and ¢ generate an Abelian subalgebra, relation (12)
applies in the form

0(p,6)=Q(p,.6,) (33)
The desired final result is then found to be
R(p, o)z gayey lp—al? (34)

Owing to our regularization it is now possible to calculate the relative
entropy between two different pure states with projectors p = p = p? and
o=¢q=gq* and [ p, g] =0. For instance, for N =2 one finds

R(p, q)=(In2)}/In(3) (35)
whereas Q(p, q)= oo follows directly from (7). The general formula for
N =2 reads

(In2)(In N)
(N+ D In{N(N+1))+2In2

R(p,q)= (36)
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Fig. |. Comparison between Q(x, y} [thin line] and R(x, y) [thick line] for various final
states.

A comparison between the ordinary relative entropy Q(p, o) and the
regularized version R(p, o) shows the following qualitative trends. First of
all, for o not too close to a non-faithful state the function values are in
satisfactory agreement with each other. Whenever g approaches a singular
state, Q diverges whereas R remains finite by construction. An illustration
is shown in Fig. 1 for N =2 with

y 0
B (0 - y>’

_(x 0>
P=\0 1=x)°

where we use the abbreviated notation Q(x, y) and R(x, y).

Second, the lack of symmetry under exchange of arguments is not
transferred from Q to R. The regularized functional is almost symmetric,
and thus can be very well regarded as a distance in state space. The respec-
tive differences are shown in Fig, 2.

Apart from these most convenient extra properties of R, the important
general properties of Q listed in Section 2.A are shared by R in the following
sense:

o

AN/ A\
- o
AR\

Np—

A A

(i) Relation (9) is literally true for R(p, o) =a,Q(p, 6), since the
proof for Q only assumes positive operators."'*!” Thus we have

Rloap + Bp,, a0, + fo,) <aR(p,, 0,)+ BR(p,, 7,), at+f=1 (38)
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Fig. 2. Comparison of asymmetry under exchange of arguments for various final states.
QOlx, y)— Q(y, x) [thin line]; R(x, y)— R(y, x) [thick line].

(i1) For Q=/3®f and @ =6®7% where p, 6 are assumed to be
mxm and £ is nxn, (10) translates into

R, @):% R(p, o) (39)

"

(iii) Contractivity in the sense of (11) cannot be proven in the form
as it stands, due to the scaling factor a, which depends on dimension.
Nevertheless, numerical tests show that R(p, o)< R(£, @) is slightly
violated in a few exceptional cases only. On the other hand, contractivity
under completely positive maps remains true in analogy to (13), Again, we
have

R(p, 0)<R(p,0) (40)

because Lindblad’s proof'!” is valid for all normalized positive operators.

(iv) As has been proven already, the lower bound (16) is replaced by
(34) whereas in analogy to (18) an upper bound is given by

R(p,0)<oy[Tr(p?6~")—1] (41)

(v) Finally, one may inquire about the effect of the spectral shift on
the von Neumann entropy itself. We denote by S(p) a suitable modification
of S(p) such that

S(E)=S¢E)=InN (42)
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Note that the central state & = ¢ is a fixed point of the regularization proce-
dure. The desired formula replacing (2) is then found to be given by

S(p)=ayS(p)—(ay—DIn N (43)

Again, S turns out to be zero on pure states and takes on its unique maxi-
mum equal to In N for the central state in complete analogy to S.

lll. APPLICATIONS TO MODELS OF
IRREVERSIBLE DYNAMICS

In order to establish a generally meaningful notion of entropy produc-
tion we recall that formula (14) is valid for completely positive maps and
faithful states. For more general dynamics involving also arbitrary states
we may assume that the time-derivative R of the regularized relative
entropy plays a decisive role. Furthermore, we shall assume that the den-
sity operator of any dynamical evolution has a well-defined unique limit
o=Ilim,_, o p,. Under these conditions the formula

1 oo
== | 1R, o)l d (44)

provides a reasonable measure of entropy production. Variable 7 denotes
an average lifetime defined by

[“ ool ar (45)
0

T=—
”pa—GH

This choice is compatible with (14) in the following sense. Under the
assumption that the upper limit in the above integrals is replaced by a
small time ¢ such that R(¢)=R(p,, o) and p, vary only slightly, one may
write

|R()| = |R(0)| + ae + O(&?)

lp.—all=lp,—all + Pe+ O(e?)

with «, # some constants. To first order in ¢ one obtains P |R(0)|, in
agreement with (14). Note that in this case R(0) is always negative owing
to (13). The following examples, however, refer to cases where (14) cannot
be used.



Regularization of Quantum Relative Entropy 1127

A. Photon Emission

The emission of a quantum of energy w by an open two-level system
is described by the simple master equation‘??
. 1. | 1 O
Pe= _Elw[sih p.l +5V{2S—p15+ — Sy S_Pr— PSS, Po= 0 0
(46)

Vector s = (sy, 5,, 53)7 contains the Pauli matrices, s, = (1/2)(s, + is,), and
y denotes the Einstein A-coefficient. The right-hand side of (46) generates
a completely positive semigroup dynamics A4, with simple solution

e 0
pe=Aip, <0 1_64”), 120 (47)

such that the pure excited state deactivates into the pure ground state,

Lo\ o (00
po—<0 0>—,__:o_>a=poo_<0 1> (48)

The time-dependent relative entropy becomes
1
R(p,, o) =%2— {(1 +e ™ n(l +e )+ (2—e") ln,<1 ~3 e‘”)} (49)

where o, =(31n2)/(5In2—31n3). For integrations on a finite interval
[0, T'] the corresponding quantities will be denoted by P, and 7. This
yields the results

tr=(1=2))y, z=e 7 (50)

PT=3(}1)“_22) (In2+(z=2)In(1—z2)—(1+2)In(1 +2)}  (51)

The total entropy production is then obtained in the limit T— oo or,

alternatively, for z=0
In2
P=y<°‘2 3“ > (52)

As expected, the result is proportional to the inverse lifetime of the excited
state. In contrast to any other available formula, (44) yields a finite value
for a physically common irreversible process connecting two pure states via
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the central state. Representing p, through a coherence vector x, according
to

pi=C+(x,-8)  x,=[u®), vo(t), w(n)]" (53)
one can characterize the model by
ut)=v(t)=0, w(t)=e -4, ¢=11, (54)

State space is made up by the full Bloch sphere with |x,] < 1/2 and the
trajectory w(z) passes from, say, the north pole straight through the origin
to the south pole. The corresponding von Neumann entropy starts from
zero, reaches its maximum of In 2 after a time 7, = (In 2)/y and drops back
to zero in the limit ¢ — co.

A more complicated situation will be presented in the next example.

B. General Relaxation in a 4-Level System

Consider the general Markovian master equation
pi=<p, (55)

with infinitesimal generator .# of Kossakowski-type®*

15

£p,=—i[H p]+3 Y apl{[Fi p Fr) + [ Fip., Fil} (56)

Lk=1

guaranteeing complete positivity. For the complete and orthonormalized
hermitian matrix set { F,} |* we use a standard representation of infinitesimal
generators of SU(4).) The basic requirement on the complex relaxation
matrix 4 is that it be nonnegative,

A={au}’>0 (57)

It therefore may be taken as hermitian. For a numerical solution of (55)
with given initial condition p, we choose a Hamiltonian H and a relaxation
matrix A by some random procedure. Then, (56) is transformed into
coherence vector representation’® to obtain 15 coupled ordinary differen-
tial equations for real-valued functions X, = [x,(1), x5(f),..., x;5(t)]7. They
have the form

x,=Gx,+k (58)
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where matrix G and vector k are determined by the elements of 4. G is
asymmetric with eigenvalues {g,} € 4. We always keep it regular with
R(g;) <0 (Vi) so as to obtain genuine relaxation into a unique final state.
In terms of functions {x,(¢)} the solution of (55) is given by

15
p1=é+2xi(t)Fis =

Z il (59)
with the constraint
0<x, <3 (60)
The evolution matrix G in (58) decomposes into
G=Qu+R, (61)

where Q4 is a skew-symmetric matrix related to A and R, is a non-sym-
metric matrix which arises from the relaxation 4.”

In the following numerical evaluations the first case refers to the
dependence of P and = on the strength of relaxation which is measured by
means of the Frobenius norm | G||. This norm is used because for non-com-
muting Q, and R, there is also a Hamiltonian contribution to relaxation
and entropy production, as has been derived in ref. 9. Figure 3(a) shows
the results for fixed initial condition p, (a pure state) and fixed H. Two
regimes can be distinguished. If R, dominates the Hamiltonian contribu-
tion Qy, then the dependence of P and t on |G| is almost entirely deter-
mined by the dependence on ||R, | and turns out to be linear. For smaliler
R, the dynamics tends towards weakly damped quasi-periodic behavior

12
1s T[x100]
T[x30)

P 10
12.5 P
10 8
7.5 6

(a)
5 4
(b)

2.5 2

IGIl

43 47 51 55 59 d
0.2 0.4 0.6 0.8 1

Fig. 3. Dependence of entropy production P and lifetime 7 on the norm of the evolution
matrix G in (a) and on the degree of mixture d in (b) [arbitrary units].



1130 Lendi et al.

and P decreases more strongly whereas the lifetime 7 increases strongly.
Clearly, for |G| = |Qgll the entropy production must equal zero and the
lifetime becomes infinite. This is the reason for bending over of the two
curves for lower values of | G||. Qualitatively, this shows that definition (44)
is reasonable, indeed. The relatively smooth behavior will always be
characteristic of Markovian dynamics although single components x;(¢)
may show quite a strong time dependence.

In the second case H and 4 and, consequently, Q5 and R, are kept
fixed. Figure 3(b) then shows the variation of P and 7 as a function of the
initial state p,. The degree of mixture d with 0 <d <1 is defined by means
of the coherence vector representing p,,

d=1-%|x,|? (62)

Note that d =0 refers to any pure state, whereas ¢ =1 is uniquely obtained
for the central state £. Again, as qualitatively expected, the closer p, to the
final state o (which is very close to { in this numerical example) the smaller
are the values of P and 7. This conforms to the geometrical picture that the
length of trajectories through the 15-dimensional state space decreases as
the degree of mixture d increases.

C. Non-Markovian Dynamics

General dynamics of open quantum systems with factorizable initial
state is described by an integro-differential equation of the Zwanzig-
type’(ZS, 26)

ji=—ilH, p,]+f0’1<<r, 5) p, ds (63)

For a two-level system, for instance, the solution may give rise to com-
plicated trajectories through the Bloch sphere and may provide an inter-
esting test of the variation of P. For this purpose the solutions are chosen
such that, as in Section I11.A, the trajectories connect the two poles via the
center but exhibit much more complicated behavior in the upper and lower
hemispheres. A suitable choice is

u(t)= f(t)coswt (64)
u(t) = f(1) sin w, ! (65)
w(t)y=e =1 (66)
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where the time-function fis given by
f() =1t —t;){ e~ =1 4 Be—atr—1)") (67)

One should remark that by known methods®® the kernel K(¢, s) can be
reconstructed from the above choice. Note also that a Markovian master
equation can never possess solutions of the above type.?*

Whereas w, will be varied, the other parameters remain fixed with

values
10 10
ti=In{—|, t,=In{—), =In2
' n<7> ? n<3> f=In (68)
ﬁ
A=/5, B=Y=. a=3, ;=80

(units are omitted throughout). The numerical evaluation of R is facilitated
by using a formula in terms of the length x, = ||x,| of the coherence vector.
One verifies® that

3 3 9 —4x? 2x
ZR(t)== : S fuiat!
- () 2ln <9_4xio>+2x, tanh < 3 )

——2—(x,-xw)tanh"‘ <2x—°°> (69)
X 3

QC
with time-derivative given by

. 2
}—R(t)=2)€, tanh“(%)—;z—(i(fxw)tanh“<2XT°°> (70)

5] ©

As an illustration, three cases are studied for zero, small and larger
detuning between the two frequencies w, and w,. As shown in Fig. 4, an
increase of detuning leads to a stronger variation of the coherence vector
length and, thus, to oscillations in the relative entropy. This can be
ascribed to an increasing complexity of the trajectories. As a consequence,
one expects that the entropy production as defined by (44) increases as
well. In fact, the results are P=2.7 for (a), P=11.5 for (b), and P=16
for (¢). On the other hand, since the relaxation constants have been kept
fixed, the lifetime should be the same in all three cases. In addition, one
may define a measure of irreversibility « in terms of relative entropy. The
following formula is based on the idea that the partly reversible, oscillating
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Fig. 4. Time dependence of relative entropy on the left with corresponding trajectories
confined to the Bloch sphere on the right (the sphere itself is not shown). (a) w,=80;
(b) w,=280.5; (¢) w, =70 [arbitrary units]. In all cases, w, = 80.

exchange of entropy between system and reservoir is averaged out by just
integrating over R itself. Thus we propose

1 =€
R jo R(1) dt (71)

and, again, x is expected to adopt the same value in all three cases. All
expectations are confirmed by a numerical evaluation of (45) and (71),
which yields 7= 1.1 and x =0.54 for all three processes (a), (b} and (c).

IV. CONCLUSION

The fundamental role of the concept of entropy production has been
stressed since the early work on nonequilibrium thermodynamics for classical
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macroscopic systems (see refs. 27, 28 and references therein). However, the
meaning of nonequilibrium implied states not too far from thermodynamic
equilibrium where important stability properties of thermodynamic poten-
tials should still hold. Under such assumptions the dynamics of irreversible
processes may be expected to be relatively simple with time dependence of
observables essentially given by some exponential decay laws from any
nonequilibrium initial value back to its final equilibrium value. For small
open systems the quantum analog of such dynamics will be given in terms
of Markovian master equations and this explains why the first mathemati-
cally sound attempts towards a quantum formulation of entropy produc-
tion were possible only after the theory of completely positive quantum
dynamical semigroups had been established.® %1% 2%)

The extension of the afore-mentioned notions to more general situa-
tions of nonequilibrium proved difficult. Nevertheless, very recent activities
for classical systems must be mentioned where attempts are made to define
entropy production for wide classes of dynamical systems (see refs. 30, 31
and references therein). In particular, Ruelle®® gives definitions and proofs
of positivity for iterated difftomorfic dynamical maps under rather general
assumptions.

For the quantum case we hope to propose also a reasonable extension
as outlined in the preceding Sections. On the one hand, the weakly irre-
versible regime should be reproduced in the known way, and on the other
hand, any process involving arbitrary pairs of initial and final states con-
nected by either Markovian or non-Markovian dynamics should be
allowed. This clearly leads to the task of generalizing relative entropy to an
everywhere finite-valued functional. The details presented in Section II.B.
set clear boundaries to the choice of a regularized functional such that by
far not any regularization would be acceptable. Summarizing again, the
physically important properties listed in Section I.A. for the ordinary func-
tional should be shared by the regularized version, supplemented by sym-
metry and finiteness on the entire state space. After all, it turned out that
a homogeneous spectral shift by unity is the distinguished choice. There
remains a certain freedom in the determination of scaling a, in (23) but the
proposed constraint (24) is obviously the minimum which must be
required. In any case it is surprising how closely related the new version is
in comparison to the old one whenever the latter is well-defined.

Now, the problem of positivity needs some special remarks. The physi-
cal meaning of entropy production has been defined in the conventional
nonequilibrium theory essentially by a continuity equation®” and, as
explained there, the values should be positive (nonnegative). Whenever an
explicit mathematical definition for a class of processes has been chosen
there is still need for a proof of positivity, in the classical®® as well as in
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the quantum case.!®) Our proposal of P in (44) replaces the minus sign in
(14) by the absolute value of the integrand and, as explained in the intro-
duction to this section, adds nothing new to proven results in the weakly
irreversible regime. For more general situations, particularly for those
dynamical evolutions which are not described by Markovian master equa-
tions, the extension remains positive. Whenever there is a non-monotonous
decrease of relative entropy, as for instance in our third example in Sec-
tion II1.C, there is a time-dependent exchange of entropy back and forth
between open system and reservoir (the latter is not treated explicitly). The
value of the production is then obviously determined by piling up all these
oscillatory contributions with positive sign, too.

Finally, the three examples have been chosen in order to illustrate
physically relevant dynamical cases not covered by conventional treat-
ments. Whereas the first two obviously are of physical relevance, the third
one might seem to be only of purely mathematical interest. On the con-
trary, we will show in a forthcoming paper®® that a similarly complicated,
highly non-Markovian dynamics can be derived and exactly solved for a
real physical situation under experimentally accessible conditions. The
analysis of entropy variation and of production rates will reveal the various
problems encountered in a formulation for general dynamics.
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